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Introduction

• Ionizing radiation is a known, and well-
quantified, human cancer risk factor

• But estimation of radiation-related cancer 
risk is uncertain 
– Statistical uncertainty
– Transfer between populations
– Extrapolation to low doses
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Breast cancer example: fitted dose response
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An (overly) simple example

• Suppose a known population baseline cancer risk of 
10% over a 30-year period (i.e., no need to estimate it)

• Suppose a uniform exposure, to dose D

• Suppose also that excess risk is proportional to dose, for 
0 < D < 1 Gy

• And that risk is doubled for D = 1 Gy

• For a 1-tailed test of size .05, how large a sample size, 
N, would be required for an 80% chance of detecting the 
radiation-related excess for different values of D? 
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Example (cont.)
• Number of cancers is binomial (N, p), where p = 0.1 H (1+D)

• Estimated excess risk, E = (number of cancers) / N - 0.1, is 
approximately normally distributed with mean = 0.1 H D and 
variance = 0.1 H (1+D) H [1 - 0.1 H (1+D)] / N

• Under the null hypothesis of no excess, E has mean = 0 and 
variance = 0.09/N (standard deviation = 0.3/ N½)

• Thus, we reject the null hypothesis if    N½H E / 0.3 > 1.645

• How large must N be for the probability of rejection to be $ 80%?
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Dose D
(Gy)

Excess
Risk

Total
Risk

N½½ × Standard Deviation
of Estimate

Required
Sample
Size (N) Null

Hypoth.
Alt.

Hypoth.

1.0 10% 20% 0.3 0.4 69

0.1 1% 11% 0.3 0.313 5728

0.01 0.1% 10.1% 0.3 0.301 558,000

0.001 0.01% 10.01% 0.3 0.300 55.7 million
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Example (cont)
• For D = 0.01 Gy (i.e., excess risk = 0.1%) and N 

= 50,000, the probability of rejecting the null 
hypothesis is .186 
– Under the null hypothesis, it is .05
– Failure to reject would be predicted by both null and 

alternative hypotheses

• Thus, (in the example) even a large study would 
be very unlikely to yield conclusive results
– In fact, a significant result would be misleading, 

because the estimated excess risk would be biased 
upward:

– If the lower 95% confidence limit > 0 for N=50,000, 
estimate must be > 0.22%, over 2 times the true value
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More bad news:
• In fact, sample size requirement is much more stringent

– we don’t “know” the baseline; we have to estimate it, which requires 
many more subjects

• And when we estimate the baseline,
– Possibility of biased ascertainment of the baseline is serious when the 

predicted excess is low
– How could we possibly control for every risk factor that might increase 

risk from 10% to 10.1%, or decrease it to 9.9%? How many such factors 
are known?

• Bottom line: 
– Stick to studies with reasonable power, judging by information from 

higher-dose studies
– Low-dose extrapolation of estimates is unavoidable;
– Direct estimation is likely to be either uninformative or misleading
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(Breast cancer again: note that 
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the 0-dose exposed rate, but 
not significantly different)
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Baseline if distal survivors included

Baseline using only proximal survivors

Pierce & Preston, Radiation Research, 2000; 154:178:86 (all solid cancers)

Note: error band 
is " 1 standard 
deviation
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Linear regression estimates (" 1 s.d.) after trimming of high-dose data from the 
right.

Left-hand panel based on proximal (<3000m) survivors only; in right-hand panel 
the distal (>3000m) survivors also contribute, resulting in higher zero-dose 
baseline

Based on data of Pierce & Preston, Radiation Research, 2000; 154:178:86
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The linear, no-threshold (LNT) model

• Currently, radiation protection philosophy is based on the LNT model

• The model states that, at low doses and low dose rates, excess risk is 
proportional to dose

• That doesn’t require linearity of dose response over the entire dose range, 
just at low doses

• The ICRP posits a “dose and dose rate effectiveness factor” (DDREF) of 2 
for low-LET radiation at low doses and dose rates for radiation protection

– Where the DDREF applies, linear-model risk based on high-dose data is divided 
by it

– In the example, excess risk at 10 mGy would be 0.05% instead of 0.1%

• A DDREF of 2 is implicit in the linear-quadratic model for leukemia
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Implications of the LNT model
• If  the estimated risk from 100 mGy to 10,000 

people is 50 excess cancers,
– The estimated risk from 10 mGy would be 5 excess 

cancers,
– But the risk to 100,000 people would be 50 excess 

cancers
– As would that for 1 mGy to 1,000,000 people
– Or for 0.1 mGy to 10 million people

• Of course, you’d never be able to prove it
• It might be expensive to reduce the dose, and the 10 million 

people might not want to pay for it
• They might feel that someone else should pay for it
• But probably “someone else” would insist on proof
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The low-dose threshold model
• If we could agree that there is no radiation-related 

cancer risk associated with doses below (say) 1 mGy, 
the 10 million people exposed to 0.1 mGy could relax

• Radiation protection would be cheaper and easier than it 
is today

• It would be even easier with a threshold at 10 mGy

• Unfortunately, a low-dose threshold at 10 mGy or 1 mGy
would be difficult to prove, for the same reasons that 
make it difficult to demonstrate the opposite
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A long-standing issue
• Source: Jennifer Caron, undergraduate thesis                  

http://resolver.caltech.edu/CaltechETD:etd-03292004-111416

• Subject was leukemia risk associated with 90-Sr in 
global fallout from nuclear weapons testing during the 
1950s & early 60s
– Very small doses to very large populations
– Leukemia risk had been demonstrated from higher-dose 

exposures:
• A-bomb survivors, ankylosing spondylitis pts, thymic irrad pts, US 

radiologists

• Fruit fly geneticists found linear dose response for 
drosophila mutations down to 250 mGy
– Also, the US radiologists’ doses accumulated at rate of ~ 1 mGy

per day; i.e., dose, and presumably risk, accumulated daily



18

Ed Lewis and Austin Brues
• Edward Lewis (1957) used available data on leukemia in 

radiation-exposed populations to fit a linear dose-
response model
– Argued for mutational factor in radiation leukemogenesis
– Estimate: 2 excess leukemias per million per cGy per year
– No experimental or epidemiological basis for radiation threshold

• Austin Brues, for AEC: toxicology model argues for 
radiation threshold – why should radiation be different?
– Clearly there was a leukemia risk at high doses
– But no direct proof of excess leukemia risk at very low doses

• The LNT model prevailed in radiation protection policy, but we are 
still in the same debate, and using many of the same arguments
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Quick review of radiobiology
• Unique type of DNA damage by ionizing radiation involves multiple 

lesions in close proximity (clustered damage) 
– ~ 70% for high-LET, ~30% for low-LET
– Can be induced by single electron track
– Can compromise repair machinery
– Processing and misrepair can lead to chromosome aberrations and 

mutation 
• i.e., damaged or altered cells can escape cell cycle checkpoint and apoptotic 

pathways

• Roles of radiation-related adaptive response, genomic instability,  & 
bystander effects not well understood; may not be relevant to 
threshold question

• Critical radiation events in tumorigenic process are mostly early 
events involving DNA losses and critical genes

• Mechanistic arguments support linear response in low-dose region
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Evidence differs by tissue
• Stem cells in the intestinal crypt of laboratory 

mouse: Selective retention of template DNA 
strands in stem cells, providing protection of the 
stem cell genome (Cairns 1975; 2002) 

• But induction of small intestine cancer by high-
dose radiation of exteriorized loop is a well-
established experimental procedure

• Very different for colon, for which there is clearly 
a low-dose risk
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Epidemiological evidence re: threshold
• For:

– Shape of dose responses for basal cell skin 
carcinoma, bone, soft tissue sarcoma, rectum, small 
intestine

– Apparent fractionation effect for lung cancer

• Against:
– X-ray pelvimetry studies (leukemia, solid cancers)
– TB, scoliosis fluoroscopy studies (female breast)
– Linear dose responses for female breast, thyroid, all 

solid cancers combined
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• Experimental and epidemiological 
evidence doesn’t preclude tissue-specific 
thresholds

• But it doesn’t support existence of a 
universal threshold, operating in all tissues

• And a threshold has to be universal to 
have much influence on radiation 
protection policy
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Quantitative Uncertainty Analysis

• Method much used in risk analysis
• Has advantage of transparency
• For it to be persuasive, audience has to 

understand how it works:
– Identify components of  risk estimation 

process
– Determine uncertainties of each, and 

propagate the uncertainties by examining how 
the components interact

– Evaluate the uncertainty of the risk estimate
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Major uncertain components

• Linear model estimate of ERR at 1Gy 
– Statistical likelihood contour

• Correction for DS86-related bias 
• Correction for transfer from LSS to US 

population
• DDREF to be applied at low doses and 

low dose rates
• Possibility of a universal threshold at some 

dose above that of interest
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ERR per Gy, in percent

Lognormal statistical uncertainty distribution for 
all solid cancers, LSS population. Sex-averaged 
ERR per Gy at age 50 following exposure at 
age 30. Mean 0.33, 90% uncertainty limits 0.18 
and 0.43. Obtained from likelihood contour.
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Normal uncertainty distribution for 
dosimetry bias correction factor, 
with mean 0.84 and 90% 
uncertainty limits 0.69-1.0. (From 
NCRP Rept. 126)

Approximately lognormal, corrected uncertainty 
distribution for ERR per Gy, with mean 0.26 and 
90% uncertainty limits 0.15-0.46.
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Monte Carlo simulation of the uncertainty distribution for cancer ERR at 1 Sv, after 
transfer to a U.S. population: the simulated distribution is approximately lognormal 
with mean 0.25 and 90% probability limits 0.13 – 0.41.
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NCRP 126 Uncertainty Model for DDREF:
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DDREF for solid tumors other than breast and 
thyroid
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Monte Carlo simulation of the uncertainty distribution for low-dose 
cancer ERR per Sv, after division by an uncertain DDREF: the simulated 
distribution is roughly lognormal with mean 0.17 and 90% probability 
limits 0.08 – 0.36.
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Point of view:
Implications of an uncertain risk estimate

• It is widely recognized that risk estimation 
is uncertain
– Uncertainty distributions like the one in the 

previous slide aren’t a new idea
• Formally, radiation protection today is 

based on a single, central value, e.g., the 
mean

• But it is not immune from political 
considerations
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Point of view (cont.)
• The uncertainty distribution summarizes all the identified 

information about risk
– But we can’t think of everything

• The exposed population presumably is concerned with 
upper limits on risk
– How bad might it be? Is the benefit really worth the risk?

• Those liable for the expense of dose reduction tend to be 
more concerned with lower limits
– Is there strong statistical evidence that there is a risk, or that the 

risk high enough to be of concern? (Can you prove it?)
• Sometimes those exposed and those liable for the 

expense are the same – e.g., radiation workers
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Uncertain possibility of a threshold

• Consider a threshold somewhere above (say) 1 
mGy as an uncertain possibility, with probability 
p. 

• Then, with probability p, ERR at 1 mGy would be 
zero

• And with probability 1-p, ERR at 1 mGy would 
be an uncertain quantity, distributed lognormally
with mean 0.17 H 0.001 and upper 95% 
probability limit 0.36 H 0.001
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Uncertain possibility of a threshold
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Uncertain threshold possibility
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Assume uncertain threshold possibility, 
with probability p

• QUA approach: risk at 1 mSv is
– zero with probability p
– lognormal (0.025%, 1.64) with probability 1-p

• p mean 95% upper limit

– 0 0.03% 0.056%
– 0.2 0.024% 0.053%
– 0.5 0.015% 0.047%
– 0.8 0.006% 0.035%
– 1 0   0
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Effect of uncertain threshold assumption on a lognormal 
(GM 0.25, GSD 1.64) uncertainty distribution for ERR per 

Sv
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Implications of an uncertain threshold for 
radiation protection

• For the simple case (threshold probability = p) 
– The mean of the uncertainty distribution for excess risk is 

multiplied by 1-p and therefore decreases with increasing p
– An upper uncertainty limit also decreases with increasing p, but 

the decrease is rather slow until p approaches 1.

• The epidemiological and radiobiological information 
available does not suggest a high value for p at any dose 
level high enough to matter.

• Thus, allowing for the possibility of a threshold would 
make very little difference to radiation protection


